CHEMISTRY OF MATERIALS

Correction to The Ternary Nitrides $GaFe₃N$ and $AlFe₃N$: Improved Synthesis and Magnetic Properties [Chemistry of Materials 2009, 21, 4332–4338. DOI: 10.1021/cm901864z]. Andreas Houben, Jens Burghaus, and Richard Dronskowski* Institut für Anorganische Chemie, RWTH Aachen University, Landoltweg 1, 52056 Aachen, Germany

Not too long ago, we published a two-step ammonolysis reaction which combines a high-temperature sintering step and a low-temperature nitriding reaction to yield a number of ternary magnetic nitrides of the general formula $MFe₃N¹$ In the course of these investigations, we came across much older studies in which Al-substituted derivatives of γ' -Fe₄N had already been mentioned.² Indeed, the use of the two-step ammonolysis reaction then made us claim the existence of the compound A IFe₃N in this very journal.³ According to our report, ferromagnetic AlFe₃N was synthesized in almost phase-pure form, and the Rietveld refinement of AlFe_3N based on Cu K α_1 radiation ($\lambda = 1.54056$ Å) resulted in a lattice parameter of $a = 3.7967(3)$ Å with a statistical occupation of Fe and Al (ratio 3:1) in space group $Fm\overline{3}m$. At $T = 546(20)$ °C both XRPD and magnetic measurements indicated the decomposition of AlFe3N into an iron-aluminum alloy. SQUID magnetometry further showed its specific saturation magnetization to be $144(2)$ A m² kg⁻¹ at 5^{$+$}T, about 30% smaller than for γ' -Fe₄N, and the coercive field of AlFe₃N was given as ten times smaller than for γ' -Fe₄N. Together with the 0.25(2) T large magnetic remanence of AIFe_3N , we classified the material to be a soft ferromagnet.

Very unfortunately, these findings are invalid in their entirety. We have reinvestigated various samples of "AlFe₃N" by means of scanning-electron microscopy and elemental mapping, as depicted in Figure 1. These data clearly evidence that the material dubbed as "AlFe₃N" consists of an intimate solid mixture of γ' -Fe₄N and *amorphous* aluminum oxide, Al₂O₃. Because of the amorphous character of the latter, it was totally invisible in the XRPD study.³ We have also crystallographically reinvestigated these samples but by using the harder Mo K α_1 radiation (λ = 0.70932 Å) which suppresses the fluorescence and increases the overall quality of the diffraction data. While the amorphous Al2O3 contribution is still invisible from the Rietveld plot (Figure 2), the refined lattice parameter of "AlFe₃N" ($a =$ $3.8026(1)$ Å) is clearly identified as the one of γ' -Fe₄N (a =

3.8009 (6) Å).⁴ Fortunately enough, the new XRPD pattern *does* show the extremely weak low-angle reflections (100) and (110) which appear in space group $Pm\overline{3}m$. Also, by use of the higherquality (i.e., proper intensities) data, an aluminum occupancy on Wyckoff position 1a and/or 3c can be excluded. With respect to the mentioned side phase in ref 3, one reflection at 20° (Figure 2) still cannot be attributed to any known compound.

The magnetic data of "AlFe₃N", in particular the magnetic saturation moment, help to semiquantitatively characterize the solid mixture. The saturation moment of "AlFe₃N" equals 5.35 $\mu_{\rm B}$.³ Since γ' -Fe₄N has a saturation moment of 8.86 $\mu_{\rm B}$, the composition appears to consist of ca. 78 mass % γ' -Fe₄N and 22 mass % of Al₂O₃. As said before, a third component is also present.

The described reaction is easily interpreted as an alumothermal procedure. The mixture of Al and $Fe₂O₃$ ignites at 1200 °C, and because of the high oxygen affinity of aluminum, Al_2O_3 releases a large lattice energy. $Fe₂O₃$ is then reduced to Fe, followed by a nitridation using the $NH₃/H₂$ stream to yield γ^\prime -Fe₄N. Al₂O₃ cannot be reduced within the hydrogen stream under the present conditions. Summarizing, AlFe₃N was not

Figure 2. X-ray diffraction pattern and Rietveld refinement ($R_{\text{Bragg}} =$ 0.061) of "AlFe₃N" on the basis of Mo K α_1 radiation using the structural model of γ' -Fe₄N and space group $Pm\overline{3}m$. The lattice parameter arrives at $a = 3.8026(1)$ Å.

Figure 1. Scanning-electron microscopy analysis of "AlFe₃N" (left) and elemental mapping (right). "AlFe₃N" consists of a solid mixture of γ' -Fe₄N and amorphous $Al₂O₃$.

synthesized as claimed. It is not clear whether AlFe₃N can at all be made by a (high-temperature) reaction. Nonetheless, the investigations by Bronger and Klemm⁵ suggest that a coupled reduction of Al₂O₃ including a noble metal, e.g., Pt, might lead to *quaternary* nitrides of the general type $Al_xM_{1-x}Fe_3N$.

REFERENCES

(1) Houben, A.; Šepelák, V.; Becker, K.-D.; Dronskowski, R. Chem. Mater. 2009, 21, 784.

(2) Stadelmaier, H. H.; Yun, T. S. Z. Metallkd. 1961, 52, 477.

(3) Houben, A.; Burghaus, J.; Dronskowski, R. Chem. Mater. 2009, 21, 4332.

(4) Burghaus, J.; Wessel, M.; Houben, A.; Dronskowski, R. Inorg. Chem. 2010, 49, 10148.

(5) Bronger, W.; Klemm, W. Z. Anorg. Allg. Chem. 1962, 319, 58.

DOI: 10.1021/cm201863y Published on Web 07/12/2011