CHEMISTRY OF MATERIALS

Correction to The Ternary Nitrides $GaFe_3N$ and $AlFe_3N$: Improved Synthesis and Magnetic Properties [Chemistry of Materials 2009, 21, 4332–4338. DOI: 10.1021/cm901864z]. Andreas Houben, Jens Burghaus, and Richard Dronskowski^{*} Institut für Anorganische Chemie, RWTH Aachen University, Landoltweg 1, 52056 Aachen, Germany

Not too long ago, we published a two-step ammonolysis reaction which combines a high-temperature sintering step and a low-temperature nitriding reaction to yield a number of ternary magnetic nitrides of the general formula MFe₃N.¹ In the course of these investigations, we came across much older studies in which Al-substituted derivatives of γ' -Fe₄N had already been mentioned.² Indeed, the use of the two-step ammonolysis reaction then made us claim the existence of the compound AlFe₃N in this very journal.³ According to our report, ferromagnetic AlFe₃N was synthesized in almost phase-pure form, and the Rietveld refinement of AlFe₃N based on Cu K α_1 radiation ($\lambda = 1.54056$ Å) resulted in a lattice parameter of a = 3.7967(3) Å with a statistical occupation of Fe and Al (ratio 3:1) in space group $Fm\overline{3}m$. At T = 546(20) °C both XRPD and magnetic measurements indicated the decomposition of AlFe₃N into an iron-aluminum alloy. SQUID magnetometry further showed its specific saturation magnetization to be 144(2) A m² kg⁻¹ at 5 T, about 30% smaller than for γ' -Fe₄N, and the coercive field of AlFe₃N was given as ten times smaller than for γ' -Fe₄N. Together with the 0.25(2) T large magnetic remanence of AlFe₃N, we classified the material to be a soft ferromagnet.

Very unfortunately, these findings are invalid in their entirety. We have reinvestigated various samples of "AlFe₃N" by means of scanning-electron microscopy and elemental mapping, as depicted in Figure 1. These data clearly evidence that the material dubbed as "AlFe₃N" consists of an intimate solid mixture of γ' -Fe₄N and *amorphous* aluminum oxide, Al₂O₃. Because of the amorphous character of the latter, it was totally invisible in the XRPD study.³ We have also crystallographically reinvestigated these samples but by using the harder Mo K α_1 radiation ($\lambda = 0.70932$ Å) which suppresses the fluorescence and increases the overall quality of the diffraction data. While the amorphous Al₂O₃ contribution is still invisible from the Rietveld plot (Figure 2), the refined lattice parameter of "AlFe₃N" (a = 3.8026(1) Å) is clearly identified as the one of γ' -Fe₄N (a =

3.8009(6) Å).⁴ Fortunately enough, the new XRPD pattern *does show* the extremely weak low-angle reflections (100) and (110) which appear in space group $Pm\overline{3}m$. Also, by use of the higherquality (i.e., proper intensities) data, an aluminum occupancy on Wyckoff position 1*a* and/or 3*c* can be excluded. With respect to the mentioned side phase in ref 3, one reflection at 20° (Figure 2) still cannot be attributed to any known compound.

The magnetic data of "AlFe₃N", in particular the magnetic saturation moment, help to semiquantitatively characterize the solid mixture. The saturation moment of "AlFe₃N" equals $5.35 \ \mu_{\rm B}$.³ Since γ' -Fe₄N has a saturation moment of $8.86 \ \mu_{\rm B}$, the composition appears to consist of ca. 78 mass % γ' -Fe₄N and 22 mass % of Al₂O₃. As said before, a third component is also present.

The described reaction is easily interpreted as an alumothermal procedure. The mixture of Al and Fe₂O₃ ignites at 1200 °C, and because of the high oxygen affinity of aluminum, Al₂O₃ releases a large lattice energy. Fe₂O₃ is then reduced to Fe, followed by a nitridation using the NH₃/H₂ stream to yield γ' -Fe₄N. Al₂O₃ cannot be reduced within the hydrogen stream under the present conditions. Summarizing, AlFe₃N was not

Figure 2. X-ray diffraction pattern and Rietveld refinement ($R_{\text{Bragg}} = 0.061$) of "AlFe₃N" on the basis of Mo K α_1 radiation using the structural model of γ' -Fe₄N and space group $Pm\overline{3}m$. The lattice parameter arrives at a = 3.8026(1) Å.

Figure 1. Scanning-electron microscopy analysis of "AlFe₃N" (left) and elemental mapping (right). "AlFe₃N" consists of a solid mixture of γ' -Fe₄N and amorphous Al₂O₃.

synthesized as claimed. It is not clear whether $AlFe_3N$ can at all be made by a (high-temperature) reaction. Nonetheless, the investigations by Bronger and Klemm⁵ suggest that a coupled reduction of Al_2O_3 including a noble metal, e.g., Pt, might lead to *quaternary* nitrides of the general type $Al_xM_{1-x}Fe_3N$.

REFERENCES

(1) Houben, A.; Šepelák, V.; Becker, K.-D.; Dronskowski, R. Chem. Mater. 2009, 21, 784.

(2) Stadelmaier, H. H.; Yun, T. S. Z. Metallkd. 1961, 52, 477.

(3) Houben, A.; Burghaus, J.; Dronskowski, R. Chem. Mater. 2009, 21, 4332.

(4) Burghaus, J.; Wessel, M.; Houben, A.; Dronskowski, R. Inorg. Chem. 2010, 49, 10148.

(5) Bronger, W.; Klemm, W. Z. Anorg. Allg. Chem. 1962, 319, 58.

DOI: 10.1021/cm201863y Published on Web 07/12/2011